
The First Amendment White Paper

Authors:
Nebojsa Konstantinovic and Bojan Jovin,
Merkle Blue DOO

The First Amendment White Paper - v1.0

Table of contents
1 Abstract 4

2 Background 5
2.1 IPFS 5
2.2 Ethereum 5

3 Current system overview 6
3.1 IPFS utilization in TFA 7
3.2 Ethereum utilization in TFA 7

3.2.1 Adding a comment 7
3.2.2 Upvoting a comment 8
3.2.3 Downvoting a comment 8
3.2.4 Adding a persona 8
3.2.5 Updating a persona 9

3.3 Persistence API 9
3.3.1 Assembling comments 9

3.4 UI 10
3.5 Current system limitations 10

3.5.1 Layer 2 solutions 10
3.5.2 State channels 10
3.5.3 State channels limitations for TFA use case 11

4 TFA Layer 2 scaling solution proposal 12
4.1 Actors 12

4.1.1 Bob 12
4.1.2 Alice 13
4.1.3 Carol 13

4.2 Smart Contract 13
4.3 Storage system 14
4.4 Channels 14
4.5 Transactions 14

4.5.1 Tx structure 15
4.6 Logical data model 15

4.6.1 Providers tree 18
4.6.2 All channels tree 19
4.6.3 Channel tree 20
4.6.4 URLs tree 21
4.6.5 Comments tree 22
4.6.6 Upvote/Downvote trees 24

1

The First Amendment White Paper - v1.0

4.7 Setup 25
4.8 Opening a state channel 25
4.9 Transactions exchange protocol 25
4.10 Closing a state channel 26
4.11 Keeping the system in sync 26
4.12 Serving the content 27
4.13 Disputes 27

4.13.1 Dispute submission strategy 27
4.13.2 Dispute channels closing strategy 28

4.13.2.1 Round 1: Bobs submit their latest state 28
4.13.2.2 Round 2: Carol1 validates the latest state Txs 28
4.13.2.3 Round 3: Carol1 creates a list of channel closing headers 28
4.13.2.4 Round 4: Channel closing and payout 29

4.13.3 Deposit distribution strategy 29
4.13.4 Fraud proofs 29

4.13.4.1 Master header 29
4.13.4.2 Providers tree 29
4.13.4.3 All channels tree 31
4.13.4.4 Channel tree 32
4.13.4.5 URLs tree 33
4.13.4.6 Comments tree 35
4.13.4.7 Upvote/Downvote tree 36

4.14 Fraud claims 37
4.15 The data withholding problem 38

4.15.1 The solution 38
4.16 Caveats 39

4.16.1 Fraud claims versus disputes 39
4.16.2 Performance 39
4.16.3 Harmful content 39
4.16.4 Block reordering 40

5 Future functionalities 41

6 Team 43

7 Glossary 45

8 Conclusion 47

9 References 48

10 Figures list 49

2

The First Amendment White Paper - v1.0

11 Appendix A 50

3

The First Amendment White Paper - v1.0

1 Abstract
Centralized content publishing platforms come with a wide variety of content control

mechanisms, ranging from direct censorship to more subtle ones such as controversial
company policies that favor certain types of publishers. For instance, Youtube has recently
issued the "demonetization" policy around content that could be perceived to be "hateful or
inflammatory". Reddit moderators have the ability to delete the content that they find unfit. There
are a lot of countries where the press is under the direct influence of the regime, et cetera. The
problem of media freedom abuse exceeds the scope of this document and is thoroughly
addressed in independent studies [1].

As the internet is shifting from centralized proprietary services towards decentralized, open
ones, ​The First Amendment (TFA) project aims to utilize this trend to alleviate the problem of
content censorship, ever present on the web today.

TFA tends to deliver:
● A decentralized, trustless, censorship-resistant content publishing platform that runs on

Ethereum [2] blockchain combined with Interplanetary File System (IPFS) [3] content
storage system.

● An ability for users to leave comments directly on the source websites.
● A solution that tackles scaling issues present on the Ethereum blockchain today.
This document:
1. Gives an overview of the current state of TFA project, referencing the technologies and

system architecture used.
2. Presents a solution proposal that tackles scalability issues and fees unpredictability

problem.
3. Gives an overview of the functionalities that are to be implemented after the scaling

solution is ready.
4. Gives a presentation of the team behind the project.

4

The First Amendment White Paper - v1.0

2 Background
2.1 IPFS

IPFS describes itself as "a peer-to-peer hypermedia protocol to make the web faster, safer,
and more open." [4] In its essence, it is a peer-to-peer distributed file system that connects
computing devices with the same system of files. It can be seen as a high throughput
content-addressed block storage model. It provides content addressed hyperlinks, with no
single point of failure, and where nodes do not need to trust each other. [5]

Image below describes centralized network against peer-to-peer network:

Image 1​: ​Centralized architecture vs. IPFS

IPFS solves the problem of content addressing, by using content-addressable storage as
opposed to location-based content storing, widely used on the web today. IPFS network
addresses the content by its hash, thus providing ​content integrity​. Subsequently, any node
can store any content, and a consumer can be sure that content he received from the IPFS
network is indeed the content he requested, just by verifying that received content hash
matches the requested address.

2.2 Ethereum
Ethereum is a blockchain-based platform that executes decentralized smart contracts in

Ethereum Virtual Machine (EVM) on multiple network nodes and uses proof of work to establish
a consensus on the state of the network. Smart contracts are Turing-complete pieces of code
that alter the state of the blockchain. One could view Ethereum as a distributed global computer
where smart contracts are executed. Every operation that gets executed inside the EVM is
simultaneously executed by every node in the network. Once the consensus on the blockchain
state is reached (when transactions are mined), the state of the blockchain is irreversible
(hard-forks are out of the scope of this document).

5

The First Amendment White Paper - v1.0

3 Current system overview
In its current form, TFA functions as a Chrome extension that allows users to comment on

any topic on the web freely. The project aims to evolve into a decentralized, trustless,
censorship-resistant content publishing platform and, to accomplish these features, it utilizes the
Ethereum blockchain in combination with IPFS. IPFS is used to store user content, and provide
content hashes as its unique identifiers, whereas the Ethereum blockchain is used to anchor
those IPFS hashes to the blockchain, thus providing the mechanism guaranteeing that the
history of the posts is intact. The combination of two (blockchain and IPFS) is already used in
many projects (for example, Filecoin). Since the platform is blockchain based, it inherits its
desired properties:

● Censorship resistance​ - no one can change/delete content, or ban users.
● Trustlessness​ - no trusted third party. Users can verify network history by themselves.
● Resilience - there is no single point of failure. The system as a whole is resistant to

attacks.
In addition to that, IPFS provides ​content immutability which is a guarantee for content

integrity.
Properties listed above make up enough of building blocks for the TFA platform.
Persistence API is a TFA javascript library that uses these building blocks to perform actions

such as persisting a new comment, upvoting, downvoting, creating a persona (user account), et
cetera. It also builds a data model and feeds it to the presentational layer of the application.

A graphical representation of current system architecture can be seen on the image below:

Image 2​: ​TFA current system building blocks

6

The First Amendment White Paper - v1.0

3.1 IPFS utilization in TFA
As previously mentioned, IPFS is used as a storage system for TFA comments and user

profile attributes. Any data stored on IPFS gets assigned a hash address which is subsequently
anchored to the blockchain ledger. This hash address is permanent and immutable, meaning
that it ensures that nobody could alter the content of the published data. Any attempt to do so
would alter the content hash, rendering it unreachable, since the new hash would not be found
on the blockchain.

Network neutrality and the decentralized nature of IPFS make it censorship resistant, and
content addressing system guarantees data integrity. This means that no one can interfere with
content published by TFA users.

3.2 Ethereum utilization in TFA
Smart contracts are immutable programs that execute when certain conditions are met. [6]

These smart contracts can be programmed with a set of instructions on the virtual machine
which are executed in an ​immutable ​and ​transparent​ fashion.

State immutability is a vital blockchain feature from TFA perspective as it guarantees that all
content published on the blockchain cannot be deleted or altered. On the other hand, all the
data published on the blockchain is transparent, which means that it is visible to anyone at any
time.

TFA currently has two smart contracts:
● Comment​ - responsible for adding, upvoting and downvoting user-submitted comments.
● Persona - responsible for associating certain user attributes (such as username and

profile image) to a specific Ethereum account.

3.2.1 Adding a comment

addComment(urlHashRef, commentHashRef)

Once a user submits his comment using TFA application, it gets stored to IPFS as a JSON

file. In return, IPFS produces a specific unique hash that matches the uploaded file
(​commentHashRef​). TFA then makes a call to Comment contract on Ethereum, sending it the
received hash coupled with the hash of the URL that the comment is associated to
(​urlHashRef​). The contract's only function is to preserve an event containing the two hashes.
Once the transaction is mined, transaction hash specific to that function call (and therefore to
that comment) is generated, and the event is preserved in the transaction log. TFA application
can further filter out the added comment from all the other comments in the system, based on
its:

● transaction hash,
● URL hash,
● uploader address.

Data flow, and component interactions are depicted on the image below:

7

The First Amendment White Paper - v1.0

Image 3​: ​System components interactions

3.2.2 Upvoting a comment

upvoteComment(txHashRef)

Once the user upvotes the comment, TFA submits a call to Comment contract with comment

transaction hash (​txHashRef​) as a parameter. The contract then preserves an Upvote event in
the transaction log, once the transaction is mined. TFA can then acquire the number of
comment upvotes by parsing the Upvote events associated with a specific comment transaction
hash.

3.2.3 Downvoting a comment

downvoteComment(txHashRef)

Similarly to upvoting, once the user downvotes the comment, TFA submits a call to

Comment contract with comment transaction hash (​txHashRef​) as a parameter. The contract
then preserves a Downvote event in the transaction log, once the transaction is mined. TFA can
then acquire the number of comment downvotes by parsing the Downvote events associated to
a specific comment transaction hash.

3.2.4 Adding a persona

setAttributes(IPFSHash)

Once the user submits a new persona, TFA stores the persona attributes to IPFS as a

JSON file. Just like with comments, IPFS then produces a hash that matches the stored file
(​IPFSHash​). This hash is then associated to the uploader account address, by the Persona
contract.

8

The First Amendment White Paper - v1.0

3.2.5 Updating a persona

setAttributes(IPFSHash)

Updating a persona uses the same logic as adding a persona, where a new set of attributes

get associated to an already existing uploader account address.

3.3 Persistence API
Persistence API is a TFA javascript library that ties together IPFS and Ethereum. It exposes

functionality such as:
● addComment,
● getComments,
● upvoteComment,
● downvoteComment,
● addPersona,
● getPersonas,
● updatePersona,
● getAccounts,
● getAccountBalance, et cetera.
Persistence API performs the above-listed actions by interacting with IPFS javascript API

and Ethereum web3 javascript API. Apart from that, it has the responsibility to build the data
model to be used by representational components (UI).

3.3.1 Assembling comments

When a user visits a certain page, TFA creates a hash of its URL, and makes a query on the
blockchain, requesting all of the AddComment events persisted in the transaction log that
matches the generated hash. After receiving all of the transaction log entries coupled with the
requested URL, it acquires three pieces of information of interest for each comment: comment
transaction hash, comment uploader account address and comment content IPFS hash.

Using the comment transaction hash, it produces another query for each received comment,
where it gathers and counts all of the Upvote/Downvote events associated to that Tx hash.

Using the uploader account address of each comment, it retrieves user attributes associated
to that address.

Finally, using IPFS hash, it retrieves the content of the comment, stored on the IPFS.
Once all of the above is gathered for each comment, the TFA persistence API has all the

information it needs for building Comment objects, later to be distributed to and used by the
presentational layer.

9

The First Amendment White Paper - v1.0

3.4 UI
The user interface is currently a Chrome extension built using React and Redux, React

being a presentational layer, and Redux serving as a model container. As TFA inclines to
become a platform (which implies building a Mozilla add-on, a website, Android and iOS app,
and an API for native websites integration), React/Redux combination provides flexibility
regarding components reusability.

Further details on UI can be found in Appendix A.

3.5 Current system limitations
Every user's post/action needs to be a valid Ethereum transaction (Tx) to be included in the

blockchain. After the Tx is mined, other users can be sure about who posted content (address
or identity) and that the post is paid for (not spam). These properties are highly desirable but
can be costly to a user. The following are considered to be limitations of the current system:

● Miner fees​ - unpredictable and expensive.
● On-chain scaling - a limited block capacity might impose a scaling issue for the

platform.
● Latency​ - content is available only after it is mined.

3.5.1 Layer 2 solutions

The system can be moved to a second layer to overcome current limitations. Second layer
solutions significantly reduce miner fees and make them more predictable, while vastly
improving scalability. Therefore, all the desired properties of a blockchain are still preserved with
one additional property enabled: users do not need to wait for posts (Txs) to be mined. They
can consume content nearly instantly. There are various approaches to implementing second
layer solutions in the blockchain ecosystem, most of which utilize off-chain transactions that get
anchored to the main blockchain to ground its security. Most notable of these solutions are state
channels (Lightning network [7], Raiden [8], uRaiden [9]) and child chains (Plasma [10]).

3.5.2 State channels

Most prominent state channels solutions on Ethereum platform are uRaiden and Raiden.
Their purpose is to reduce fees and increase throughput between two parties that interact
frequently. For example, uRaiden is based on a unidirectional state channel between a sender
and a receiver. For the sake of demonstration, let us assume that Alice and Bob want to
transact using uRaiden. Alice is Bob's customer and makes frequent purchases at Bob's store.
Alice opens a state channel to Bob by publishing a transaction Tx to Ethereum network that
deposits Alice's funds to smart contract. Once the Tx is mined, the state channel is open, and
Alice's funds are locked in a smart contract for future spending. Alice can now send Txs to Bob
off-chain, through their private communication channel, usually using HTTP request. Each
transaction in a channel contains a state channel balance update and Alice's signature. Balance
update contains information on how much of Alice's deposit is sent to Bob. Bob receives Txs

10

The First Amendment White Paper - v1.0

and stores them. When Alice and Bob decide to close the state channel, Bob signs the last Tx
and publishes it to the Ethereum network. Once the Tx is mined, the channel is closed, and
Alice's deposit is sent to both Alice and Bob, where Bob receives the spent part of it, and Alice
receives what remains. Alice can top-up the deposit at any time while the state channel is open.

3.5.3 State channels limitations for TFA use case

State channels are limited to two parties only. No third party can observe what is happening
in the channel except for Alice and Bob since the channel is private. If we would like to add
observers to a channel, those observers could close the channel at any time since messages
sent through the channel obtain information needed for channel closing. Channel closing is
costly for both Alice and Bob, and no one can detect which of the observers closed the channel.

Also, in the case of bi-directional state channels, there is a constraint that Alice has to be
online during the settlement period. Otherwise, Bob can close the channel with a transaction
that is more favorable for him, without being corrected. TFA layer 2 solution does not have this
kind of a constraint as Bob’s competitors, and system auditors (explained in 4.1.3) always make
sure that the channel is closed correctly.

11

The First Amendment White Paper - v1.0

4 TFA Layer 2 scaling solution proposal
TFA second layer solution is based on state channels, very similar to uRaiden channels

(explained in more detail in 3.5.2). Users in a system open channels to content delivery
providers to be able to post content on the network. Channels are used to send signed
messages (Txs) containing the user activity on the network. Interested parties can get channel
updates nearly instantly. Rules of the system are coded in smart contracts, and users are
incentivized to follow the rules. Malicious users who break the rules get penalized.

4.1 Actors
There are three primary actors in the system: Alice, Bob, and Carol. Each of them has a

distinctive role. There is no restriction on the number of each of these actors in the system. All
actors interact with smart contract and IPFS.

Actors and their interactions within the system are represented on the image below:

Image 4​: ​Actors in the system

4.1.1 Bob

Bob serves as a content delivery node and payment processor. He makes a profit from
comment fees but also holds the most significant responsibility in the system. Users open
channel to Bob to be able to post content, whereas Bob has a responsibility to maintain the valid
data model and to communicate to other Bobs in the system to ensure overall system validity.
Before he can deliver content and process payments, Bob must submit one large deposit to a

12

The First Amendment White Paper - v1.0

smart contract which he could lose if any third-party catches him breaking the rules. For each
opened channel, he must top the deposit up with a smaller amount (to ensure that Bobs with
more customers hold more substantial responsibility). As long as he follows smart contract
defined rules, he does not lose the deposit. Bob can have multiple users with open channels to
him but has only one large deposit.

Bob is interacting with:
● Alice - he has an open channel with Alice and processes her transactions (comments,

upvotes, downvotes).
● Smart contract - watches the state of smart contract, submitting transactions and

actively participating in disputes.
● IPFS​ - he publishes content on the IPFS, and also reads content from it.

4.1.2 Alice

Alice is an author/user who is an active participant on the platform. She has an open
channel with Bob with a committed deposit to be spent (similar to uRaiden channel). These
funds are used to pay for posts, upvotes and downvotes she makes on the platform.

Alice is interacting with:
● Bob​ - she has an open channel with Bob.
● Smart contract - watches the state of smart contract and can submit channel closing

transactions and disputes.
● IPFS​ - she is subscribed to Bob's IPFS repositories and also reads objects from IPFS.
She can additionally store content on the IPFS for better content delivery.

4.1.3 Carol

Carol is an auditor and only reads content. She does not have an open channel with
anyone, but she is also checking if Bob is breaking any rules. If she can prove that Bob is
cheating, she can withdraw a part of Bob's deposit from the smart contract. Carols are usually
parties whose incentive is for the system to work correctly, such as other Bobs, or stakeholders,
but basically, anyone can perform the tasks of this role. Carol needs to submit a small one time
fee to a smart contract, to be registered as the system auditor.

Carol is interacting with:
● Smart contract​ - watches the state of the smart contract, and can submit a dispute.
● IPFS - she is subscribed to Bob's IPFS repositories, making sure that Bob's activity is

following the smart contract defined rules.

4.2 Smart Contract
The smart contract is deployed on the Ethereum network and its state is visible to anyone. It

has four primary functions:
● Hold Bob's deposit - since Bob is the most responsible party in the system (a trade-off

for making profit) he is required to submit a large deposit on the smart contract, which
can be spent by anyone who submits proof that he is breaking the rules.

13

The First Amendment White Paper - v1.0

● Store open channels​ - all of the open channels used to transact on the second layer.
● Defines rules​ - minimum fee value, rules dispute, et cetera.
● Store registered Carols - store information on all of the system auditors that can

participate in disputes.

4.3 Storage system
IPFS is used to store a data model in the system. As an object is stored on IPFS, its hash

represents a unique identifier used to access that specific object. IPFS hashes are anchored on
blockchain and used to fetch data from the IPFS after the state channels are closed.

4.4 Channels
Alice opens a channel to Bob with committed deposit, where an opening transaction is being

published to the blockchain. After the opening transaction is mined, the state channel is
considered open, and Alice and Bob can communicate by sending each other messages.
Messages are sent from Alice to Bob but never submitted to blockchain during the channel
lifespan.

When Alice or Bob decide that they want to close a channel, they can publish the latest state
of the channel and wait for it to get mined. The state of the channel is represented by an IPFS
header object that points to a Merkle tree data structure that holds all of the transactions
belonging to that specific channel. State update that gets published to Ethereum network closes
the channel and represents its final state. After the final state update is mined, and there are no
disputes, it becomes visible to all participants in the system. After the channel is closed, it
cannot be reused in further system functioning. If the business relationship between the same
Alice and Bob should revive again, a new channel has to be opened. Messages exchanged
between Alice and Bob within a channel correspond to transactions that represent comments
submission, comments upvoting or downvoting.

4.5 Transactions
Transactions in the system are regular Ethereum transactions that get published in the

appropriate data structures, explained in more detail in the text to follow. Txs cannot close the
channel but can be used for dispute, when presented with appropriate fraud proofs. To close the
channel, Bob or Alice must provide the valid IPFS header object that points to a Merkle tree
structure in which the transactions are published.

There are three kinds of transactions in the system:
● Comment Txs​ - representing the comment published by Alice.
● Upvote Txs​ - representing the upvote of some other comment Tx.
● Downvote Txs​ - representing the downvote of some other comment Tx.

Transactions structure is depicted on the image below:

14

The First Amendment White Paper - v1.0

Image 5​: ​Transactions

4.5.1 Tx structure

Every Tx contains the following data:
● signature​ - proving that Alice signed it,
● channel id​ - channel identifier,
● type​ - comment, upvote or downvote,
● content hash - hash of an IPFS object containing content, URL, and timestamp in case

of a comment transaction, or the other Tx hash and timestamp in case of an
upvote/downvote transaction.

A timestamp is a current block hash, and it is used to enforce that Bob and Alice cannot
back-date or submit transactions with future dates.

For simplicity sake, in this proposal proof of concept (PoC), all transactions (comments,
upvotes, and downvotes) have the same cost.

4.6 Logical data model
Logical data model consists of two distinct logical parts, presentational (left side of the

Image 6) and channel model (right side of the Image 6). Master header ties both parts into one
logical model. Both models traverse to transactions to the bottom, but in a different way.
Presentational model is optimized to group data by URLs, so it is easy for readers to reach
comments for a particular URL. Channel model groups data by channels, so that channel
closing data structures are visible and easily verified.

All objects in the model are interconnected and inherently signed by Bob in the master
header. All data is visible for everyone to verify, as every Bob must serve content. Data in two
models must match at all times, meaning that all of the transactions included in the channel

15

The First Amendment White Paper - v1.0

model must be included in the presentational one, and vice versa. If any discrepancy in the two
models is detected, Carol can submit a dispute by presenting valid proof of that discrepancy.

All of the Merkle trees in the model must hash correctly, and all of the timestamps in the
model are blockchain block hashes.

Full data model is represented on the image below:

16

The First Amendment White Paper - v1.0

Image 6​: ​Logical data model

The master header is at the top of the logical data model, and contains the following data:
● B1sig​ - Bob1's signature. The signature must be valid.

17

The First Amendment White Paper - v1.0

● t​ - the time of the last update (Ethereum block hash).
● utroot - root element of the Merkle tree that contains the URLs tree. This root element

must match the root of the URLs tree.
● # - the number of elements in the URLs tree. The number of elements must match the

number of leaves in URLs tree.
● uthash​ - hash of the URLs tree IPFS object.
● ptroot - root element of the Merkle tree that contains Providers tree. This root element

must match the root of the Providers tree.
● pthash​ - hash of the Providers tree IPFS object.
For simplicity sake, it is forbidden for two Master headers with the same timestamp to

coexist. In later versions, pointers to a previous Master header might be introduced, for faster
content delivery.

4.6.1 Providers tree

Providers tree is used for storing ​All channels headers from all Bobs registered in the
system. Every Bob has his own "slot" in the Providers tree, based on his unique identifier. If Bob
omits one of the All channels headers, he can be disputed. All channels headers in a tree must
be verified objects, in a sense that no disputes can be called on them. In a case of a dispute,
both disputed Bob and the one that is storing header linked to the dispute could lose their
deposit. Therefore it is each Bob's responsibility to perform a validity check on the All channels
header before he includes it in his Providers tree. Updates must be done regularly, meaning that
the difference between a timestamp in the Master header and a timestamp in all of the included
All channels headers must be less than a predefined time window. There are three exceptions
to this:

● There is a fraud proof called on a specific All channels header.
● There is a fraud claim posted on a specific All channels header.
● There is a data unavailability claim posted on a specific All channels header.
The difference between a fraud proof and a fraud claim is that the fraud proof relates to a

fraud that is provable to the Smart contract. Fraud claim refers to a fraud that cannot be proven
to the Smart contract (usually due to the size of the proof) but can be made evident to all of the
participants in the system.

We'll go into more details regarding fraud proofs, fraud claims and the data unavailability
problem in chapters that describe the system functioning.

Also, adding an All channels header into the Providers tree must be done in chronological
order (a new version of the tree cannot contain the header with a lower timestamp).

Providers tree is depicted on the image below:

18

The First Amendment White Paper - v1.0

Image 7​: ​Providers tree

Providers tree's primary function is to be used as a truth discovery mechanism in a case of a
dispute. The mechanism of dispute and truth discovery is explained in more detail in the
Disputes chapter (4.13).

The number of elements in Providers tree must match the total number of Bobs in the
system.

4.6.2 All channels tree

All channels tree is used for storing channel headers for all Bob's customers (Alices), in the
form of a Merkle tree where Merkle tree leaves are pointing to channel headers.

Every channel has its own "slot" in the All channels tree, based on its unique identifier. If
Bob omits one of the channels, he can be disputed.

For simplicity sake, it is forbidden for two All channels headers with the same timestamp to
coexist. In later versions, pointers to previous All channels header might be introduced, for
faster content delivery.

All channels tree is depicted on the image below:

19

The First Amendment White Paper - v1.0

Image 8​: ​All channels tree

All channels header contain the following data:
● B1sig​ - Bob1's signature. The signature must be valid.
● root - root element of the All channels Merkle tree. The root element must match the

root from the IPFS Merkle tree object.
● hash​ - hash of the All channels Merkle tree IPFS object.
● t​ - the time of the last update.
The number of elements in the All channels tree must match the total number of channels in

the system.

4.6.3 Channel tree

Channel tree is used to group all of the transactions that belong to the same channel, in the
form of a Merkle tree. Merkle tree leaves are pointing to transactions in the channel.

Timestamps of each Tx contained in the Channel tree must not exceed the timestamp of All
channels header that contains that Channel tree. Also, no Tx added in a new iteration of
Channel tree, should have the timestamp that precedes the timestamp of the previous All
channels header. In simpler words, every new Tx timestamp should fit between the timestamp
of the previous All channels header and a timestamp of the new All channels header. These
rules are introduced to disable future-dating and back-dating of comments. If Bob breaks these
rules, he can be disputed and lose his deposit.

Every Tx in the Channel tree must have the same channel id (CID) as the one in channel
header. If Bob includes a Tx with a non-matching CID, he loses his deposit.

Channel tree is depicted on the image below:

20

The First Amendment White Paper - v1.0

Image 9​: ​Channel tree

Channel header contains the following data:
● B1sig​ - Bob1's signature. The signature must be valid.
● CID - a unique identifier for the state channel. This identifier must exist on the

blockchain, referring to that specific channel.
● root - root element of the Merkle tree that contains all of the Txs that belong to the state

channel. This root must match the root of the Channel tree.
● # - the number of Txs in the Merkle tree. The number must match the number of leaves

in the Channel tree.
● hash​ - hash of the Merkle tree IPFS object.
Channel headers are objects used for channel closing, in case of no dispute.
Channel tree is susceptible to Merkle tree consistency proofs, thus enforcing the "add only"

property to it.

4.6.4 URLs tree

URLs tree is used for grouping content by URL. It consists of Merkle tree and leaf objects
acting like headers for Comments tree objects. URLs tree object's hash and root are present in
the master header.

URLs tree is depicted on the image below:

21

The First Amendment White Paper - v1.0

Image 10​: ​URLs tree

Leaf objects of URLs tree contain the following data:
● URL1​ - URL which comments refer to.
● root1 - root element of the Url1 presentation object Merkle tree. This root must match

the root of the URL1 Merkle tree.
● # - the number of elements in the Comments Merkle tree. This number must match the

number of leaves in Comments Merkle tree.
● hash​ - hash of a Comments tree object.
Any attempt made by Bob to alter or delete the content of the Merkle tree, as well as to post

content with a non-matching URL, can be detected by other participants in the system, and
proven to the Smart contract.

4.6.5 Comments tree

Comments tree object contains all content associated with a specific URL. The object
contains all comments posted on that URL, as well as the number of upvotes and downvotes for
each comment. It consists of a Merkle tree and leaf objects representing a comment. Since it
does not contain transactions, it is lightweight and used by readers who want to consume
content for a specific URL.

Comments tree is depicted on the image below:

22

The First Amendment White Paper - v1.0

Image 11​: ​Comments tree

Leaf objects of Comments tree contain the following data:
● Tx hash - a hash of the comment transaction. Tx hash must point to a valid comment Tx

that refers to that URL.
● A​ - Alice's address.
● t​ - the time of the comment (Ethereum block hash).
● content​ - content from comment transaction.
● up root - root element of the Upvote Merkle tree. This root must match the root in the

Upvote tree IPFS object.
● up # - the number of elements in the upvote Merkle tree, and upvote count. This number

must match the number of leaves in the Upvote tree IPFS object.
● up hash​ - hash of the upvote Merkle tree IPFS object.
● down root - root element of the downvote Merkle tree. This root must match the root in

the Downvote tree IPFS object.

23

The First Amendment White Paper - v1.0

● down # - the number of elements in the downvote Merkle tree, and downvote count.
This number must match the number of leaves in the Downvote tree IPFS object.

● down hash​ - hash of the downvote Merkle tree IPFS object.

4.6.6 Upvote/Downvote trees

Upvote and Downvote trees are depicted on the image below:

Image 12​: ​Upvote/Downvote tree

Upvote/Downvote tree is used to group all of the upvote/downvote transactions that relate to

the same comment transaction, in the form of a Merkle tree. Merkle tree leaves are pointing to
upvote/downvote transactions made by any Alice to a specific comment. Again, Merkle tree
hash and root is present in an object above - Comments tree object.

Upon adding a new element to the Merkle tree, Bob updates the comment object that the
new element refers to, and updates the comments tree, URLs tree, and Master header
accordingly.

Any attempt made by Bob to alter or delete the content of Merkle tree, as well as to add
upvote/downvote Tx that points to the content Tx with non-matching URL, can be detected by
other participants in the system, and be proven on the smart contract, resulting in Bob losing his
deposit.

24

The First Amendment White Paper - v1.0

Upvote/Downvote trees are susceptible to Merkle tree consistency proofs [11], thus
enforcing the "add only" property to them.

4.7 Setup
Bob has a large deposit in smart contract and repos on IPFS. Alice is about to open a state

channel to Bob. Carol has submitted a one time fee to be registered as a system auditor and is
subscribed to Bob's IPFS repos. All parties are monitoring the smart contract.

4.8 Opening a state channel
When Alice wishes to open a state channel to Bob, she constructs the transaction containing

her deposit, and her signature, and sends the transaction to Bob. Upon receiving the channel
opening transaction, Bob checks if the deposit and signature are valid. In case Bob wishes to
proceed and open the channel with Alice, he co-signs the transaction and publishes the
transaction to the smart contract. As soon as the transaction is mined, the state channel is
considered to be open. After that, Bob and Alice can continue to exchange an array of
transactions, each of which refers to comments publishing, upvoting or downvoting.

4.9 Transactions exchange protocol
After the state channel is open, Bob and Alice continue to exchange transactions respecting

the following protocol:
1. Alice constructs a Tx containing a channel id, type, timestamp, counter, and a pointer to

the content she wishes to publish (in case of a comment transaction) or pointer to a Tx
she wishes to upvote/downvote (in case of upvote/downvote transaction) and sends it
privately to Bob.

2. Bob checks if all of the fields in the received Tx are valid. If he detects that there exists a
problem, he responds to Alice addressing that problem, thus giving her a chance to
correct the Tx. Otherwise, if the transaction is valid, Bob includes it into the Channel tree,
constructs the new Channel header.

3. Bob then proceeds to update all of his data model structures, bottom up. First, he
includes the new Channel header in his All channels tree and generates new All
channels header. Then he includes that All channels header in his Providers tree. At the
same time, he places the new transaction in the Comments tree object, updates the
URLs tree accordingly, and links everything up in the Master header.

4. Alice checks if her transaction has been published. If so, the channel remains open, and
she can proceed to publish another Tx. If Bob, for some reason, refuses to publish
Alice's Tx, she can close the channel with Bob.

Note: Bob is allowed to batch transactions and do multiple updates at once, as long as he
does not break the time restriction rules.

25

The First Amendment White Paper - v1.0

4.10 Closing a state channel
In the case of cooperative channel closing (no dispute), Alice or Bob use the Channel

header to close the channel. If one party is trying to commit fraud and harm the other party,
there is a dispute period to prove the fraud. Only Alice and Bob are permitted to close the
channel in this way. After the dispute period has passed, other participants in the system can
submit fraud proofs if any.

It is Bob's responsibility to make sure that the channel is closed with the last published
Channel header. Closing the channel with a header that is not the last published one, is
considered as spam from the system standpoint. Therefore, if Alice attempts to do so (to save
money), Bob has a dispute period to present the latest valid header. If he fails to do so, Carol
can present the last published valid header and collect a part of Bob's deposit, since Bob is
considered as an accomplice in the fraud.

If Bob tries to close the channel with a header that contains a count higher than the actual
number of published transactions, Alice can dispute him by requesting the proof for the
transaction with the Channel Merkle tree leaf position matching the one from the header. Since
she has not signed such a transaction, Bob is not able to provide the proof, and she gets to
collect a part of Bob's deposit. Bob could try to add an already existing Tx to the Channel Merkle
tree, but having duplicate Txs in the tree is also a cause for dispute.

4.11 Keeping the system in sync
Using the IPFS as the Tx exchange medium is not very practical as it would require a lot of

IPFS objects downloads, which would degrade the system performance. For that reason, IPFS
data model is used to verify the validity of the exchanged data, and as a backup option for data
syncing if some of the Bobs become unresponsive. Instead, Bobs expose their data updates as
a traditional server, by implementing a Pub-Sub engine. They would regularly publish their Tx
deltas, accompanied with appropriate signed All channels header for validation purpose. Other
Bobs would be subscribed to these deltas, and upon receiving them, they would apply them to
their model. After applying them, if their generated header matches the received All channels
header, they would include that All channels header into their model, and apply the deltas onto
their presentational model.

If the generated header does not match the received one, that implies that there is a fault in
the received data and a possibility for dispute. In that case, the "receiver Bob" would check the
"server Bob’s" IPFS model and commit a fraud proof to Smart contract if possible.

Also, Bobs would be required to serve content on-demand, for other Bobs that are lagging,
for new Bobs that are syncing their model, and for Carols for auditing purpose.

As explained in chapter 4.6.1, updates of Providers tree must be done regularly, meaning
that the difference between a timestamp in the Master header and a timestamp in all of the
included All channels headers must be less than a predefined time window. This restriction is
introduced to prevent data back-dating. If any of the Bobs become unresponsive, other Bobs
risk violating this restriction. In those situations, any of the remaining Bobs should issue a
request for the missing unresponsive Bobs All channels header on the Smart contract. The

26

The First Amendment White Paper - v1.0

unresponsive Bob then has a predefined period to expose the requested header to the Smart
contract. If he fails to do so, he loses his deposit. To prevent other Bobs from draining a specific
Bob's funds by continually requesting header updates on the Smart contract, even though that
Bob is feeding them regular deltas, the request issuer must cover the cost of response
transaction. Clients (Alices) are implemented in such a manner to abandon Bobs that are
frequently unresponsive.

4.12 Serving the content
As a client wishes to access the content related to a specific URL, it would submit an HTTP

request to any Bob (usually the one with the most recent Master header timestamp). Bob would
then respond with the Comments tree object, a Master header, and an audit proof [12]. After
validating the received data, the client would assemble the data and present it to the reader.

It is important to note that at this point Bob is not aware if he is responding to a regular
content consumer or a Carol, and must be aware that his response could be used for dispute
purposes.

4.13 Disputes
A dispute is a process ignited when any of the Bobs is caught committing fraud. Fraud proof

is a minimal set of data presented to the smart contract, enough to unambiguously prove that a
fraud has been committed. Fraud proofs are part of a dispute transaction. Every fraud proof
must contain at least one valid signature of disputed Bob. There are multiple ways Bob can be
disputed, and therefore, there are multiple fraud proofs.

4.13.1 Dispute submission strategy

Any Carol that submits a fraud proof to the blockchain risks being copied by other Carols
that have not done any of the validation work. Those copycat Carols can even submit a copied
fraud proof Tx with a higher fee, to ensure that their Tx gets mined first. This kind of loophole
favors the rich Carols over the honest ones.

Fraud proof submission is made by using a two-step commit-reveal scheme to prevent
favoring copycat Carols. When Carol notices that Bob1 can be disputed, she constructs a
dispute Tx (DTx) as well as proof of dispute Tx (PoDTx). DTx contains a fraud proof, while
PoDTx contains a hash of DTx. In the first step (commit), Carol publishes the PoDTx to the
blockchain, so she can prove that she had a DTx at a time of submission. This transaction is
indistinguishable from any other transaction on the network, making it imperceptible to other
dishonest copycat Carols. In step two (reveal), after PoDTx has been mined, Carol publishes
the DTx to the blockchain. Once the DTx is mined, and if smart contract determines that fraud
proof is valid and matches the one in PoDTx, Bob1 is considered as fraudulent, and his deposit
and customers are lost.

Multiple Carols can submit disputes, both PoDTx and DTx. If fraud proofs are valid and
PoDTx in the same block as first Carol, they are eligible for a share of Bob1's deposit. That way

27

The First Amendment White Paper - v1.0

anyone who validated Bob1 gets a share. A list of Carols with valid proofs is now visible to
anyone, where Carol1 is the first, Carol2 is second, et cetera.

Carol cannot submit multiple proofs since she needs to be registered. Registering in the
system as an auditor requires a fee. This registration process prevents Carol to submit multiple
proofs to increase her share of reward in the dispute process.

4.13.2 Dispute channels closing strategy

At this point, all opened channels to Bob1 need to be closed, and the last valid state (logical
data model) needs to be determined.

4.13.2.1 Round 1: Bobs submit their latest state

After a successful dispute, a consensus needs to be formed on what the state of all
channels that are opened to Bob1 is. Bobs who want to participate in consensus can do so by
submitting the latest state Tx (LSTx) containing their master header MH with timestamp t. Only
those Bobs who assist in determining the consensus by submitting their MH are entitled to a
share of disputed Bob’s deposit.

4.13.2.2 Round 2: Carol1 validates the latest state Txs

After a period of LSTx submission, Carol1 first validates if all Bobs have submitted the latest
state that is consistent with their model. If Carol can prove inconsistencies, she can claim new
disputes against Bobs, just like when she noticed inconsistencies with Bob1. If a dispute is
raised, disputed Bob's model is not used for consensus.

4.13.2.3 Round 3: Carol1 creates a list of channel closing headers

If there are no disputes for LSTx, she can start building a list of channel closing headers.
Channel closing headers are Channel headers contained in the most recent valid All channels
tree provided by the disputed Bob. Since all Bobs must update their model periodically, all
models must contain precisely the same data in the past, while latest Txs may or may not be
included yet. For every channel, she'll find the longest valid All channels Merkle tree in any
model contained in LSTxs by applying the following algorithm:

● Each All channels header from committed LSTxs gets one weight point.
● Each All channels header that links to another, previous All channels header inherits the

previous All channels header weight points.
● Channel headers from the All channels header with the highest weight get used for

channels closing.
● If we have a tie situation (possible when Bob has been feeding one chain of data to

some Bobs and the different chain to other Bobs), the All channels header with lesser
hash wins.

Once Carol completes building a list for all channels, she includes it in a consensus
transaction (CTx) and submits it to the blockchain.

28

The First Amendment White Paper - v1.0

4.13.2.4 Round 4: Channel closing and payout

If there are no disputes for CTx for a predefined period, each Carol in a list gets an equal
share. However, if Carol2 can prove that Carol1 did not construct a valid header list in her CTx,
she can dispute Carol1's CTx with her channel headers. Carol2 submits her sub-list of headers
containing only disputed headers along with proofs of inclusion in selected LSTx. The sub-list of
these committed headers are usually more recent ones that link back to the disputed ones. If no
one disputes Carol2's claims, she can get Carol1's parts of share for every channel that is
disputed. The process continues until all channels are closed.

When all channels are closed, Bobs and Carol that participated in dispute get paid. Also, all
Bobs update their model according to the information provided in the channel closing headers.

4.13.3 Deposit distribution strategy

Disputed Bob's deposit is used to pay for transaction fees of all channel closing transactions
that are not disputed. What is left from Bob's deposit is evenly divided to two halves: first half is
divided equally among all Bobs who participated in dispute consensus, while the second half is
divided among Carols who participated in the dispute process. The second half is divided as
explained in the previous chapter.

The reason that other Bobs get half of the deposit (or what is left of it after channel closing)
is to prevent the situation where a fraudulent Bob reports himself and collects his deposit.

4.13.4 Fraud proofs

Fraud proofs are part of a dispute transaction. All dispute functions are listed in the following
chapters.

4.13.4.1 Master header

Malformatted header with valid signature - if a header contains a valid signature and any of
its fields are in a wrong format, for dispute it is enough to submit that header.

dispute(masterHeader)

Two Master headers with # inconsistencies - if the Master header 1 is older than Master
header 2, but count in Master header 1 is higher than the count in Master header 2, it is enough
to submit the two headers as a proof.

dispute(masterHeader1, masterHeader2)

Two Master headers with the same timestamp - if there are two different Master headers with
the same time, it is enough to submit the two headers as a proof.

dispute(masterHeader1, masterHeader2)

4.13.4.2 Providers tree

Providers tree disputes are all disputes that are related to Providers tree header (Master
header), Providers Merkle tree, and objects that tree leaves are pointing to (BnACH).

29

The First Amendment White Paper - v1.0

Missing BnACH - if any All channels header (BnACH) is missing from the tree, Carol can ask
Bob to submit a proof that missing BnACH is included in the Master header.

askForPath(masterHeader, Bn)
If Bob does not submit anything, and timeout expires, Carol wins the dispute. If Bob can

produce proof, he does not lose his deposit, but this means that he constructed a valid tree but
omitted a specific BnACH from it, and thus, this case becomes a candidate for a fraud claim.

Two ACH for the same Bob included - if there are two ACH entries for the same Bob, Carol
should submit those two entries with proof of their inclusion in Providers tree.

dispute(masterHeader, path1, BACH1, path2, BACH2)

Time in BnACH bigger than in Master header - if BnACH with time t2 is included in the tree,
but Master header contains t1, where t2 > t1

dispute(masterHeader, path, BnACH)

Malformatted BnACH header with valid signature - if any All channels header contains a
valid signature and any of its fields are in a wrong format, Carol should submit that faulty All
channels header (BnACH) and the proof that it is a part of a Master header.

dispute(masterHeader, path, BnACH)

Tree not ordered chronologically - if Providers tree is not ordered chronologically (by the time
of Bob registration), Carol should submit a BnACH whose position in the tree does not match
position in the smart contract.

dispute(masterHeader, path, BnACH)

Tree updated with the previous version of BnACH - if Merkle tree contains BnACH1 at time
t1, and is updated with BnACH2 at time t2, where BnACH1 is newer than BnACH2 and t2 is
higher than t1, Carol should provide proofs by presenting both All channels headers and proofs
that they are included in Master headers.

dispute(masterHeader1, path1, BnACH2, masterHeader2, path2, BnACH1)

Tree updated with different BnACH with same time - if Merkle tree contains BnACH1 at time
t1, and is updated with BnACH2 with the same time t1, where BnACH1 is different than
BnACH2, Carol should provide proofs by presenting both All channels headers and proofs that
they are included in Master headers.

dispute(masterHeader1, path1, BnACH2, masterHeader2, path2, BnACH1)

Empty tree object - if Providers tree is empty object, Carol should submit a master header
containing a hash to empty object.

dispute(masterHeader, treeObject)

30

The First Amendment White Paper - v1.0

Disputable BnACH is included - if All channels header (BnACH) that can be disputed exist in
Merkle tree, Carol should submit the disputed All channels header, proof that it is included in the
Master header, and the dispute transaction (DTx).

dispute(masterHeader, path, BnACH1, DTx)

Time in one of the headers lower than time window - if the difference between time in Master
header and time in any of Bob's All channels headers (BnACH) is bigger than predefined time
window, Carol should submit that All channels header and proof (audit path) that it belongs to
the Master header.

dispute(masterHeader, path, BnACH)

4.13.4.3 All channels tree

All channel tree disputes are all disputes that are related to All channels tree header
(BnACH), Merkle tree, and objects that tree leaves are pointing to (CH).

Missing Channel header - if any of the Channel headers are missing from the tree, Carol can
ask Bob to submit a proof that missing CH is included in the All channels header.

askForHeaderAndPath(ACH, CH)
If Bob does not submit anything, and timeout expires, Carol wins the dispute. If Bob can

produce proof, he does not lose his deposit, but this means that he did not provide a valid All
channels tree and this case becomes a candidate for a fraud claim.

Two CH with the same CID included - if there are two CH entries with the same CID in the All
channels tree, Carol should submit those two entries with proof of their inclusion in All channels
tree.

dispute(ACH, path1, CH1, path2, CH2)

Malformatted Channel header with valid signature - if any Channel header contains a valid
signature and any of its fields are in a wrong format, Carol should submit that faulty Channel
header (CH) and the proof that it is a part of All channels header.

dispute(ACH, path, CH)

Tree not ordered chronologically - if All channels tree is not ordered chronologically (by the
time of channel opening), Carol should submit a Channel header which position in the tree does
not match the position in the smart contract.

dispute(masterHeader, path, CH)

Tree updated with the previous version of CH - if All channels tree at time 1 contains CH1,
and is updated with CH2 at time t2, where t2 is higher than t1 and CH2 has a lower count than
CH1, Carol should provide proofs by presenting both Channel headers and proofs that they are
included in All channels headers.

dispute(ACH1, path1, CH1, ACH2, path2, CH2)

31

The First Amendment White Paper - v1.0

Two CH headers with same CID and # - if two different Channel headers with the same count
for the same channel exist, Carol should submit both headers alongside proofs that they are
included in All channels headers.

dispute(ACH1, path1, CH1, ACH2, path2, CH2)

4.13.4.4 Channel tree

Channel tree disputes are all disputes that are related to Channel tree header
(channelHeader), Channel Merkle tree, and transactions that tree leaves are pointing to (Tx).

Missing Tx - if a Channel tree does not include Tx that is present in Comments tree or
Upvote/downvote tree, that means that there is an inconsistency between the Presentational
model and the Channel model. In this scenario, Carol should submit proof of the existence of
that transaction in the Presentational model and ask Bob to submit proof of existence in the
Channel model, with the same Master header. Since Bob is not capable of doing so, he loses
his deposit.

askForHeaderAndPath(masterHeader, path, Tx)

Duplicate Tx ​- If a Channel tree contains two same Txs, it is enough for Carol to submit those
two Txs with proof of their inclusion in the Channel tree.

dispute(channelHeader, path1, Tx, path2, Tx)

Malformatted Tx or content object - if a channel tree leaf points to a Tx containing a field that
is in a wrong format, or is smaller or larger than the limit, Carol should submit the malformatted
transaction or content and proof that it is included in the tree (audit path).

dispute(channelHeader, path, Tx, contentObject) or
dispute(channelHeader, path, Tx)
If Tx or contentObject contains fields that are too expensive to submit as proof, Carol can

ask Bob to submit it.
askForTx(channelHeader, path) or
askForContentObject(channelHeader, path, Tx)

Missing URL - if a Channel tree does not include comment Tx with URL that is present in URLs
tree, that means that there is an inconsistency between the Presentational model and the
Channel model. In this scenario, Carol should submit proof of existence of that
commentsHeader containing that URL in the Presentational model and ask Bob to submit proof
of the existence in the Channel model, with the same Master header. Since Bob is not capable
of doing so, he loses his deposit.

askForHeaderAndPath(masterHeader, path1, commentsHeader)

Tree not ordered chronologically - if a channel tree contains a Tx2 with time t2 before a Tx1
with time t1 both transactions and their audit paths should be submitted.

dispute(channelHeader, path1, Tx1, path2, Tx2)

32

The First Amendment White Paper - v1.0

Inconsistent tree​ - if a channel tree does not pass consistency proof validation.
dispute(channelHeader1, path1, channelHeader2, path2)

smaller than leaf count - if # in the header is smaller than the number of leaves in Merkle
tree, Carol should submit the last leaf and proof (audit path) that it is included in the tree.

dispute(masterHeader, path, lastLeaf)

bigger than leaf count - if # in the header is bigger than the number of leaves in Merkle tree,
Carol should ask for a transaction with count matching the one in the header.

askForLastLeaf(header)
If Bob cannot produce a valid answer, he loses the deposit. Otherwise, it means that he has

a different header than Carol. That is now enough for Carol to a submit dispute with two
different headers with the same #.

dispute(channelHeader1, channelHeader2)

Time in Tx bigger than in BnACH (Future-dated Tx) - if there is a time in Tx higher than the
time in BnACH

dispute(BnACH, path, channelHeader, Tx, content)

Tx backdating - if there is a Tx with timestamp t, and All channels header with timestamp t1
(ACHt1), where t <=t 1, and All channels header with timestamp t2 (ACHt2) where t2> t1. If Tx is
not a part of ACHt1 and is a part of ACHt2, Carol should submit the proof that that Tx is in
ACHt2, and ask for proof of its inclusion in ACHt1. Since Tx is not in ACHt1, Bob is not able to
present proof and loses his deposit.

askForProof(ACHt1, Tx, Txpath, CH, CHpath, ACHt2)

Wrong CID in Tx - if a Channel tree leaf points to a Tx with CID that does not belong to that
Channel tree, Carol should submit proof of the existence of faulty transaction (Tx + audit path) in
that specific CID header.

dispute(channelHeader, path, Tx)

bigger than deposit - if the count in the header is bigger than the deposit in channel opening
Tx it is enough to submit that header as a proof.

dispute(channelHeader)

Last header not used for channel closing - if a header other than the last is used for channel
closing, the latest header should be submitted.

dispute(channelHeader)

4.13.4.5 URLs tree

URLs tree disputes are all disputes that are related to Master header (masterHeader),
Merkle tree, and objects that tree leaves are pointing to (commentsHeader).

33

The First Amendment White Paper - v1.0

Missing URL - if a URL tree does not include URL that is present in Tx in Channel tree, that
means that there is an inconsistency between the Presentational model and the Channel model.
In this scenario, Carol should submit proof of the existence of that transaction in the Channel
model and ask Bob to submit proof of existence in the Presentational model, with the same
Master header. Since Bob is not capable of doing so, he loses his deposit.

askForPath(masterHeader, path, Tx, content)

Two Comments headers referring to the same URL ​- If there are two Comments headers,
referring to the same URL in the URL tree, Carol should submit those two headers with proofs
of their inclusion in URL tree.

dispute(masterHeader, path1, commentsHeader1, path2, commentsHeader2)

Malformatted Comments header - if a URLs tree leaf points to an object containing a field that
is in a wrong format, Carol should submit the malformatted object and proof that it is included in
the tree (audit path).

dispute(masterHeader, path, commentsHeader)
If the header contains fields that are too expensive to submit as proof, Carol can ask Bob to

submit it.
askForObject(masterHeader, path)

Tree not ordered chronologically - all Comments headers must be sorted chronologically.
Carol can submit two headers that break this rule.

dispute(masterHeader, path1, commentsHeader1, path2, commentsHeader2)

Tree updated with the previous version of Comments header - if Merkle tree contains
commentsHeader2 at time t1, and is updated with commentsHeader1 at time t2, where
commentsHeader1 is newer than commentsHeader2, and t2 is higher than t1, Carol should
provide proofs by presenting both comments headers and proofs that they are included in
Master headers.

dispute(masterHeader1, path1, commentsHeader2, masterHeader2, path2,
commentsHeader1)

smaller than leaf count - if # in Master header is smaller than the number of leaves in Merkle
tree, Carol should submit the last leaf and proof (audit path) that it is included in the tree.

dispute(masterHeader, path, lastLeaf)

bigger than leaf count - if # in Master header is bigger than the number of leaves in Merkle
tree

askForLastLeaf(masterHeader1)
If Bob can produce a valid answer, it means that he has a different header than Carol. That

is now enough for Carol to submit a dispute with two different headers with the same #
dispute(masterHeader1, masterHeader2)

34

The First Amendment White Paper - v1.0

Empty tree object - if Comments tree is empty object Carol should submit master header and a
path to the empty object.

dispute(masterHeader, path, commentsTreeObject)

4.13.4.6 Comments tree

Comments tree disputes are all disputes that are related to Comments tree header
(Comments header), Merkle tree, and objects that tree leaves are pointing to (Tx headers).

Missing Tx - if a comments tree does not include comment Tx that is present in a channel tree,
Carol can ask Bob to submit same Master header with the path to the comments Tx

askForHeaderAndPath(masterHeader, path, Tx)

Two Tx headers referring to the same transaction ​- If there are two Tx headers with the
same Tx hash field in the Comments tree, Carol should submit those two Tx headers, with
proofs of their inclusion in the Comments tree.

dispute(masterHeader, path1, tx1Header, path2, tx2Header)

Malformatted tx header​ - if a tx header contains a field that is in a wrong format
dispute(masterHeader, path, txHeader)
If tx header contains fields that are too expensive to submit as proof, Carol can ask Bob to

submit it.
askForObject(masterHeader, path)

Tree not ordered chronologically - if a channel tree contains a txHeader1 with time t2 before
a txHeader1 with time t1 both headers and their audit paths should be submitted.

dispute(masterHeader, path1, txHeader1, path2, txHeader2)

Tree updated with the previous version of txHeader header - if Merkle tree contains
txHeader2 at time t1, and is updated with txHeader1 at time t2, where commentsHeader1 is
newer than commentsHeader2 and t2 is higher than t1, Carol should provide proofs by
presenting both tx headers and proofs that they are included in Master headers.

dispute(masterHeader1, path1, txHeader2, masterHeader2, path2, txHeader1)

in Comments header smaller than leaf count - if # in Comments header is smaller than the
number of leaves in Merkle tree

dispute(commentsHeader, path, lastLeaf)

in Comments header bigger than leaf count - if # in Comments header is bigger than the
number of leaves in Merkle tree, Carol can ask Bob to submit a path to the last leaf in
Comments tree using same Master header

askForLastLeaf(masterHeader)

35

The First Amendment White Paper - v1.0

If Bob can produce a valid answer, it means that he has a different Master header than
Carol. That is now enough for Carol to submit a dispute with two different headers with same
time

dispute(masterHeader1, masterHeader2)

Two headers with the same # - if two different transaction headers with the same upvote and
downvote count exist

dispute(txHeader1, txHeader2)

Time in txHeader bigger than time in Master header - if txHeader with time t2 is included in
the tree, but Master header contains t1, where t2 > t1

dispute(masterHeader, path, txHeader)

Not a comment Tx​ - if Tx with the wrong type is included in the Merkle tree
dispute(masterHeader, path, Tx)

Non-matching A, time, content - if a tx header contains a field that does not match a field in Tx
included in the channel tree

dispute(masterHeader, path1, txHeader, path2, Tx, content)

Non-matching URL - if a tx header is included in Comments tree for URL1, but Tx hash in Tx
header is pointing to a Tx for URL2

dispute(masterHeader, path1, txHeader, path2, Tx)

4.13.4.7 Upvote/Downvote tree

Upvote/Downvote tree disputes are all disputes that are related to Upvote/Downvote tree
header (txHeader), Merkle tree, and upvote/downvote transactions that tree leaves are pointing
to (Tx).

Missing Tx - if an Upvote/downvote tree does not include upvote/downvote Tx that is present in
channel tree, Carol can ask Bob to submit same Master header with the path to Tx

askForHeaderAndPath(masterHeader, path1, Tx)

Duplicate Tx ​- If an Upvote/downvote tree contains two same Txs, it is enough for Carol to
submit those two Txs with proof of their inclusion in the Upvote/downvote tree.

dispute(masterHeader, path1, Tx, path2, Tx)

Malformatted Tx - if an Upvote/Downvote tree leaf points to a Tx containing a field that is in a
wrong format, or is smaller or larger than the limit, Carol should submit the malformatted
transaction or content and proof that it is included in the tree (audit path).

dispute(masterHeader, path, Tx)
If Tx contains fields that are too expensive to submit as proof, Carol can ask Bob to submit

it.

36

The First Amendment White Paper - v1.0

askForTx(masterHeader, path)

Txs not ordered chronologically - if an upvote/downvote tree contains a Tx2 with time t2
before a Tx1 with time t1

dispute(masterHeader, path1, Tx1, path2, Tx2)

Inconsistent tree​ - if a upvote/downvote tree does not pass consistency proof validation
dispute(masterHeader1, path1, masterHeader2, path2)

smaller than leaf count - if # in header is smaller than number of leaves in Merkle tree, Carol
can submit the last leaf

dispute(masterHeader, path, lastLeaf)

bigger than leaf count​ - if # in the header is bigger than the number of leaves in Merkle tree
askForLastLeaf(masterHeader1)
If Bob can produce a valid answer, it means that he has a different header than Carol. That

is now enough for Carol to submit a dispute with two different headers with the same #
dispute(masterHeader1, masterHeader2)

Time in tx bigger than time in txHeader - if tx with time t2 is included in the tree, but txHeader
contains t1, where t2 > t1

dispute(masterHeader, path, tx)

Not upvote/downvote Tx​ - if Tx with the wrong type is included in the Merkle tree
dispute(masterHeader, path, Tx)

Upvote/Downvote Tx points to a wrong comment Tx - if upvote/downvote Tx points to
comment Tx that is not present in the header of the Merkle tree (comment Tx hashes in
txHeader and upvote/downvote Tx do not match)

dispute(masterHeader, path, Tx)

Tx back-dating - if an upvote/downvote tree at time t1 does not contain Tx1 with time t1, but at
time t2 contains Tx1 with time t1

askForPath(masterHeader1, masterHeader2, path2, Tx1)

4.14 Fraud claims
Unlike fraud proofs, fraud claims refer to fraudulent situations that cannot be proven to the

smart contract, usually due to the size of the proof. For example, if the root in any of the signed
headers does not match the root in the linked IPFS Merkle tree, to prove this fraud, it would be
necessary to submit the entire Merkle tree. Other examples include situations where Bob
deliberately omits an element in the IPFS Merkle tree (or even a whole sub-tree for that matter).

37

The First Amendment White Paper - v1.0

However, since all of the data is public, any fraudulent behavior is visible and easily
verifiable by every participant in the system. As all Bobs are obligated to verify the validity of the
data received from other Bobs, they can quickly detect this kind of situation. Upon doing so,
they are not to include the fraudulent All channels header into their data model. If they include
the fraudulent All channels header into their model, they are treated the same way as the Bob
who published the fraudulent header. Instead, they should file a fraud claim, specifying the
invalid data, to the smart contract. There are two possible outcomes:

● If the fraud claim turns out to be valid, the fraudulent Bob does not lose his deposit
(since the claim cannot be proven) but gets "excommunicated" from the system, as no
other Bob should include any of his future published data on account of the fraud claim.
Exclusion from the system causes him to lose all of his clients, as their future posts and
actions will not be a part of the overall system data model. The clients are implemented
in such a manner that after verifying the fraud claim, they start closing channels with
dishonest Bob with the last valid state.

● If the fraud claim turns out to be invalid (attack on Bob), it gets ignored, and Bob who
posted the claim gets expelled from the future system functioning. If the fraud claim is
posted by Carol, and it turns out to be invalid, it is just ignored.

Once a valid fraud claim is mined, other Bobs should use the fraud claim transaction in their
Providers tree, instead of the All channels header of the Bob who committed the fraud.

4.15 The data withholding problem
At any point of the system functioning, any of the Bobs can go rogue, stop publishing data

using Pub-Sub engine, and stop publishing IPFS objects. After being pinged on the blockchain,
they could publish a header that contains a pointer (hash) to an unpublished IPFS object. In this
situation other Bobs cannot file a fraud claim, as rogue Bob could, at any time, reveal the
missing data and disprove them, causing them to lose business.

4.15.1 The solution

If Bob decides not to publish any piece of information, instead of including his All channels
header to a Providers tree, other Bobs are obligated to include a "missing data" statement,
indicating the exact piece of information that is missing. There is a certain time window for Bob
to restore the missing data, as he could be facing server downtime. If he fails to do so in that
predefined time window, the majority of honest Bobs will have a "missing data" statement in
their Providers tree (instead of Bobs All channels header), and Bob’s latest valid All channels
header. In the situation where the time window has elapsed, and the majority of Bobs do have a
"missing data" statement, one of the Bobs collects those statements and submits them to the
blockchain together with audit proofs to other Bobs Providers headers.

Please note that a simple majority of Bobs with "missing data" statement is not good enough
in this scenario, as a dishonest Bob can spawn a network of his loyal Bobs (an operation that
would be very costly to him, but one that must be taken into consideration) and feed the data
only to them. Therefore, an algorithm should be used that takes into account other Bob’s overall

38

The First Amendment White Paper - v1.0

reputation, number of successfully closed channels, number of open channels and overall track
record.

Once the proof is submitted to the blockchain, a channel closing procedure described in the
chapter Dispute channels closing strategy commences. The only difference is that other Bobs
do not have to post the latest valid state, as it was already gathered together with the "missing
data" statement. The channels are closed using the dishonest Bobs deposit, but in this case, he
does not lose all of his deposit, as we cannot be sure that he was withholding data deliberately.
The aftermath is that he loses a part of his deposit required for channels closing, and it is up to
his customers to decide if they want to reestablish collaboration with him or migrate to another
Bob.

If a certain Bob publishes a “missing data” claim for another Bob that is, in fact, providing
data, clients (Alices) are implemented to automatically abandon the Bob that posted the false
“missing data” claim.

4.16 Caveats

4.16.1 Fraud claims versus disputes

There is a disproportion in repercussions that Bob faces when there is a dispute filed against
him, compared to the situation where a fraud claim is filed against him. In both situations, he is
committing fraud, but the first one causes him to lose the deposit, and the second one, since it
cannot be proven to the smart contract, only makes him lose business.

We are working on the protocol that should level the playing field for these two situations.

4.16.2 Performance

If any of the Bobs decide to shut the servers down and only update the IPFS objects, there
would be no way to hold him responsible, but he would degrade the overall performance of the
system since data gathering, and verification would require multiple IPFS objects download. A
good thing about this scenario is that, once any of the other Bobs has processed unresponsive
Bob’s data, he could continue to feed them to the rest of the system.

Another issue is related to the fact that all of the Bobs should keep track of all of the system
state. This could lead up to the system bloating over time, and as a consequence, increase the
price of the comments fees. We are working on the protocol that should allow Bobs to commit
the validated parts of the data model on the blockchain, and only keep track of the updates,
upon doing so. The overall system state would then be constructed by merging the parts
committed on the blockchain and the "live" updates.

4.16.3 Harmful content

Balancing between providing a censorship-resistant platform, and protecting consumers
from harmful content is not an easy task. PoC version of the platform will not include this kind of
protection, but later, commercial versions should focus on providing machine learning based,
content filtering plugins that can be configured and executed on the client side, based on the
client preferences.

39

The First Amendment White Paper - v1.0

4.16.4 Block reordering

Since block hashes are used as timestamps in system functioning, block reordering could
impact this functionality. This impact should be a subject of a thorough analysis.

40

The First Amendment White Paper - v1.0

5 Future functionalities
This chapter contains future functionality, to be implemented after the TFA layer 2 protocol is

completed.

System optimization

System optimization refers to performance improvements of the layer 2.

Contract stabilization and optimization

Implies security auditing of the smart contracts, running them against ConsenSys guidelines,
and possibly migration from Solidity/Truffle to Viper/Populus if the latter turns out to be safer and
more practical.

Conversation threads

Implementation of functionality that allows responding to comments.

Donations for quality content

Donations for quality content implies an implementation that provides an easy way of
transferring funds from a satisfied reader to the content creator.

Explore comments option

Layer 2 implementation would only provide an ability to browse comments associated with a
visited URL. To make the product more user-friendly, and give the users insight into the
domains with most activity, we will implement various browse options, such as browsing by a
specific domain (not URL), by recent activity, by the author of the comments, by trending topics,
et cetera.

Author profile page

Implementation of a profile page with provided author info, and all of his comments.

Subscription to authors of interest

Implementation of possibility to subscribe to a particular author of interest and get notified
when he posts something new to the system.

Content filtering strategy

Dealing with sensitive or harmful content in a censorship-free system is a delicate task that
should be approached thoroughly. The first iteration could rely on identity systems such as
uPort, for our users’ registration. Ultimately content filtering policy should be defined on the
client side, based on users preferences, with open filter plugins that rely on machine learning.

Create a website

41

The First Amendment White Paper - v1.0

Implementation of a native website that binds all of the functionalities of the extension,
allows browsing by various categories, implements user profiles, allows easy auditor and
provider registration, et cetera.

Mozilla addon

Implementation of a Mozilla add-on, aside from the Chrome extension.

Content bounties

Implementation of a system where a group of users, interested in a particular users opinion
on some topic, could offer a bounty that could be collected by the user of interest, upon
providing comment on the requested subject.

Content challenging system

Integration with market prediction protocols such as Augur, to challenge other users content
credibility or truthfulness.

Android app

Implementation of an Android app.

iOS App

Implementation of an iOS app.

Integration with BAT

Integration with BAT to provide our users a share of profit for content consumption.

Integration with identity systems

Integration with identity systems such as uPort for user registration.

Integration with MetaMask

Integration with MetaMask to simplify the payment process.

Integration with native portals

Implementation of an API that would allow any portal to use TFA platform as their
commenting system.

42

The First Amendment White Paper - v1.0

6 Team
Bojan Jovin (CEO)

Has an MSc degree in Electrical and Computer Engineering -
Computer Science, University of Novi Sad, Serbia.

Work experience:
● Software developer and project manager for Schneider

Electric DMSNS (Serbia, 2009-2015)
● Java developer for Ixaris Systems Ltd. (Malta,

2015-2016)
● Senior Java developer and consultant for Codecentric

(Serbia, 2016-2018)
● CEO/Co-founder at Merkle Blue DOO (Serbia,

2018-present)

Successfully carried out a number of large international projects
as a project manager, five of which in China, one in Argentina,
Mexico, and England.

Oracle Certified Professional, Java SE 8 Programmer.

Experienced in Javascript language and Javascript frameworks
(Nodejs, Npm, Angular, React, Redux, Bootstrap, et cetera).

Experienced in agile software development methodologies
(carried out a role of SCRUM master).

Familiar with software architecture and development paradigms
such as DOA, Event Sourcing, Microservices, TDD, Clean
Architecture, SOLID, et cetera.

Extremely interested in blockchain ecosystem since 2013. Has
experience working with Solidity and Truffle framework.

Fluent in English.

43

The First Amendment White Paper - v1.0

Nebojsa Konstantinovic (CTO)

Has an MSc degree in Electrical and Computer Engineering -
Computer Science, University of Novi Sad, Serbia.

Work experience:
● Junior software developer for Schneider Electric DMSNS

(Serbia, 2009-2010)
● Self-employed at Scraperware Novi Sad (Serbia,

2012-2018)
● CTO/Co-founder at Merkle Blue DOO (Serbia,

2018-present)

Worked on a series of small web projects involving Web design,
HTML/CSS/JS, PHP, SEO.

Experienced Java developer, worked with Vaadin framework,
Spring framework, Selenium, TDD.

Experienced in Javascript language and Javascript frameworks
(Nodejs, Npm, React, Redux, MaterialUI, et cetera).

Experienced in agile software development methodologies.

Experienced in development of Ethereum smart contracts. Has
experience working with Solidity and Truffle framework.

Extremely interested in blockchain ecosystem since 2011.

Fluent in English.

44

The First Amendment White Paper - v1.0

7 Glossary

phrase meaning

TFA The First Amendment

IPFS Interplanetary File System

persona user profile

IP Internet Protocol

EVM Ethereum Virtual Machine

Tx Transaction

web3 Ethereum javascript API

UI User Interface

Ganache Local testnet client

Ropsten Public Ethereum testnet

HTTP HyperText Transfer Protocol

CID Channel Identifier

Bsig Bob’s signature

t timestamp (block hash)

utroot The root element of the URLs tree

uthash IPFS hash for the URLs tree object

ptroot The root element of the Providers tree

pthash IPFS hash for the Providers tree object

up root The root element of the Upvote tree

down root The root element of the Downvote tree

45

The First Amendment White Paper - v1.0

MH Master Header

ACH All Channels Header

BnACH All Channels Header for n-th Bob

CH Channel Header

DTx Dispute Transaction

PoDTx Proof of Dispute Transaction

LSTx Last State Transaction

CTx Consensus Transaction

BAT Basic Attention Token

uPort Identity system

Augur Prediction market platform

PoC Proof Of Concept

JSON JavaScript Object Notation

46

The First Amendment White Paper - v1.0

8 Conclusion
This document underlined the potential for abuse of centralized content publishing, and

offered a blockchain backed solution that is both censorship resistant and scalable. It gave an
overview of the current system architecture that resides on layer 1, with an in-depth look at the
layer 2 solution proposal that tends to tackle current blockchain ecosystem issues such as
scalability and fees volatility.

At the time being there are a few censorship resistant social network projects (most
prominent being Akasha [13], and Peepeth [14]), none of which offer the scaling capacity of The
First Amendment, and the ability to leave comments directly at the source page that they relate
to.

Here at Merkle Blue [15], we strongly believe that, in the world of ever increasing media
pressures, censorship, misinformation and fake news, there is a growing need for a
decentralized, trustless, censorship resistant content publishing platform. Blockchain technology
adoption would accelerate the growth of our user base, and hopefully our Layer 2 solution
would, in return, contribute to the technology adoption and utilization.

Join our cause! Exercise your right of free speech!

47

The First Amendment White Paper - v1.0

9 References
[1] Reporters Without Borders - 2018 WORLD PRESS FREEDOM INDEX , 2018
(​https://rsf.org/en/ranking​)

[2] Vitalik Buterin, Ethereum - A NEXT GENERATION SMART CONTRACT &
DECENTRALIZED APPLICATION PLATFORM, 2013
(​http://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_d
ecentralized_application_platform-vitalik-buterin.pdf​)

[3] Juan Benet. IPFS - Content Addressed, Versioned, P2P File System. 2014.
(​https://ipfs.io/ipfs/QmR7GSQM93Cx5eAg6a6yRzNde1FQv7uL6X1o4k7zrJa3LX/ipfs.draft3.pdf​)

[4] IPFS (​https://ipfs.io/​)

[5] Interplanetary File System wiki
(​https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/InterPlanet
ary_File_System.html​)

[6] Opus white paper (​https://opus.audio/whitepaper.pdf​)

[7] Joseph Poon, Thaddeus Dryja - The Bitcoin Lightning Network: Scalable Off-Chain Instant
Payments, 2016 (​https://lightning.network/lightning-network-paper.pdf​)

[8] Raiden Network (​https://raiden.network/​)

[9] uRaiden (​https://raiden.network/micro.html​)

[10] Joseph Poon, Vitalik Buterin - Plasma: Scalable Autonomous Smart Contracts, 2017
(​https://plasma.io/plasma.pdf​)

[11] IETF, RFC 6962, section 2.1.1, 2013 - Merkle Audit Paths
(​https://tools.ietf.org/html/rfc6962#section-2.1.1​)

[12] IETF, RFC 6962, section 2.1.2, 2013 - Merkle Consistency Proofs
(​https://tools.ietf.org/html/rfc6962#section-2.1.2​)

[13] Akasha (​https://akasha.world/​)

[14] Peepeth (​https://peepeth.com/welcome​)

[15] Merkle Blue (​https://merkleblue.com/​)

48

https://rsf.org/en/ranking
http://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
http://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
https://ipfs.io/ipfs/QmR7GSQM93Cx5eAg6a6yRzNde1FQv7uL6X1o4k7zrJa3LX/ipfs.draft3.pdf
https://ipfs.io/
https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/InterPlanetary_File_System.html
https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/InterPlanetary_File_System.html
https://opus.audio/whitepaper.pdf
https://lightning.network/lightning-network-paper.pdf
https://raiden.network/
https://raiden.network/micro.html
https://plasma.io/plasma.pdf
https://tools.ietf.org/html/rfc6962#section-2.1.1
https://tools.ietf.org/html/rfc6962#section-2.1.2
https://akasha.world/
https://peepeth.com/welcome
https://merkleblue.com/

The First Amendment White Paper - v1.0

10 Figures list
Image 1​: ​Centralized architecture vs. IPFS
Image 2​: ​TFA current system building blocks
Image 3​: ​System components interactions
Image 4​: ​Actors in the system
Image 5​: ​Transactions
Image 6​: ​Logical data model
Image 7​: ​Providers tree
Image 8​: ​All channels tree
Image 9​: ​Channel tree
Image 10​: ​URLs tree
Image 11​: ​Comments tree
Image 12​: ​Upvote/Downvote tree

49

The First Amendment White Paper - v1.0

11 Appendix A
As a Chrome extension, TFA presents its data in the form of a sidebar that gets injected into

the native page. The sidebar currently has two panels:
● Comments management panel
● Persona management panel
The comments management panel displays all of the comments associated with the

currently visited page and allows users to leave new comments.

Comments management panel

Persona management panel allows adding and updating personas and selecting a current
persona.

50

The First Amendment White Paper - v1.0

Persona management panel

The current system is tested and works on private testnet (Ganache) and Ropsten testnet.

51

